Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 227-234, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430017

RESUMO

Platelet-rich plasma (PRP) can cause osteogenic differentiation of dental pulp stem cells (DPSCs). However, the effect of exosomes derived from PRP (PRP-Exos) on osteogenic differentiation of DPSCs remains unclear. Herein, we evaluated the impact of PRP-Exos on osteogenic differentiation of DPSCs. PRP-Exos were isolated and identified by transmission electron microscopy (TEM) and western blotting (WB). Immunofluorescence staining was performed to evaluate endocytosis of PRP-Exos by DPSCs. Alkaline phosphatase staining, alizarin red staining, western blot and qRT-PCR were carried out to evaluate the DPSCs osteogenic differentiation. The sequencing microRNA (miRNA) was conducted to determine the microRNA profile of PRP-Exos treated and untreated DPSCs. The results showed that endocytosis of PRP-Exos stimulated DPSCs odontogenic differentiation by elevated expression of ALP, DMP-1, OCN, and RUNX2. ALP activity and calcified nodules formation of PRP-Exos treated DPSCs were considerably elevated relative to that of the control group. MicroRNA sequencing revealed that 112 microRNAs considerably varied in PRP-Exos treated DPSCs, of which 84 were elevated and 28 were reduced. Pathway analysis suggested that genes targeted by differentially expressed (DE) miRNAs were contributed to many signaling cascades, such as the Wnt cascade. 65 genes targeted by 30 DE miRNA were contributed to Wnt signaling. Thus, it can be infered that PRP-Exos could enhance osteogenic differentiation and alter the miRNA expression profile of DPSCs.


Assuntos
Exossomos , MicroRNAs , Plasma Rico em Plaquetas , Osteogênese/genética , Exossomos/genética , Polpa Dentária , Proliferação de Células , Diferenciação Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Via de Sinalização Wnt , Células-Tronco , Células Cultivadas
2.
Microbiol Res ; 281: 127613, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38232494

RESUMO

Systemic erythematosus lupus (SLE) is an autoimmune disease involving multiple organs that poses a serious risk to the health and life of patients. A growing number of studies have shown that commensals from different parts of the body and exogenous pathogens are involved in SLE progression, causing barrier disruption and immune dysregulation through multiple mechanisms. However, they sometimes alleviate the symptoms of SLE. Many factors, such as genetic susceptibility, metabolism, impaired barriers, food, and sex hormones, are involved in SLE, and the microbiota drives the development of SLE either by depending on or interacting with these factors. Among these, the crosstalk between genetic susceptibility, metabolism, and microbiota is a hot topic of research and is expected to lay the groundwork for the amelioration of the mechanism, diagnosis, and treatment of SLE. Furthermore, the microbiota has great potential for the treatment of SLE. Ideally, personalised therapeutic approaches should be developed in combination with more specific diagnostic methods. Herein, we provide a comprehensive overview of the role and mechanism of microbiota in lupus of the intestine, oral cavity, skin, and kidney, as well as the therapeutic potential of the microbiota.


Assuntos
Lúpus Eritematoso Sistêmico , Microbiota , Humanos , Lúpus Eritematoso Sistêmico/terapia , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/etiologia , Predisposição Genética para Doença , Pele , Rim
3.
Biomater Sci ; 11(12): 4151-4183, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37161951

RESUMO

The influence of metal and metal oxide nanomaterials on various fields since their discovery has been remarkable. They have unique properties, and therefore, have been employed in specific applications, including biomedicine. However, their potential health risks cannot be ignored. Several studies have shown that exposure to metal and metal oxide nanoparticles can lead to immunotoxicity. Different types of metals and metal oxide nanoparticles may have a negative impact on the immune system through various mechanisms, such as inflammation, oxidative stress, autophagy, and apoptosis. As an essential factor in determining the function and fate of immune cells, immunometabolism may also be an essential target for these nanoparticles to exert immunotoxic effects in vivo. In addition, the biodegradation and metabolic outcomes of metal and metal oxide nanoparticles are also important considerations in assessing their immunotoxic effects. Herein, we focus on the cellular mechanism of the immunotoxic effects and toxic effects of different types of metal and metal oxide nanoparticles, as well as the metabolism and outcomes of these nanoparticles in vivo. Also, we discuss the relationship between the possible regulatory effect of nanoparticles on immunometabolism and their immunotoxic effects. Finally, we present perspectives on the future research and development direction of metal and metal oxide nanomaterials to promote scientific research on the health risks of nanomaterials and reduce their adverse effects on human health.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Humanos , Óxidos/toxicidade , Nanopartículas/toxicidade , Nanopartículas Metálicas/toxicidade , Sistema Imunitário , Metais/toxicidade , Estresse Oxidativo
4.
Clin Oral Investig ; 27(8): 4083-4106, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37071220

RESUMO

OBJECTIVES: Patients with hematological malignancies have dynamic changes in oral microbial communities before and after treatment. This narrative review describes the changes in oral microbial composition and diversity, and discusses an oral microbe-oriented strategy for oral disease management. MATERIALS AND METHODS: A literature search was performed in PubMed/Medline, Web of Science, and Embase for articles published between 1980 and 2022. Any articles on the changes in oral microbial communities in patients with hematological malignancies and their effects on disease progression and prognosis were included. RESULTS: Oral sample detection and oral microbial sequencing analysis of patients with hematological malignancies showed a correlation between changes in oral microbial composition and diversity and disease progression and prognosis. The possible pathogenic mechanism of oral microbial disorders is the impairment of mucosal barrier function and microbial translocation. Probiotic strategies, antibiotic strategies, and professional oral care strategies targeting the oral microbiota can effectively reduce the risk of oral complications and the grade of severity in patients with hematological malignancies. CLINICAL RELEVANCE: This review provides dentists and hematologists with a comprehensive understanding of the host-microbe associated with hematologic malignancies and oral disease management advice.


Assuntos
Neoplasias Hematológicas , Microbiota , Doenças da Boca , Humanos , Doenças da Boca/terapia , Neoplasias Hematológicas/terapia , Progressão da Doença , Gerenciamento Clínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA